【实战讲解】数据血缘落地实施

在复杂的社会分工协作体系中,我们需要明确个人定位,才能更好的发挥价值,数据也是一样,于是,数据血缘应运而生。

今天这篇文章会全方位的讲解数据血缘,并且给出具体的落地实施方案。

蔡博士、李璐、群华、石峰、盛文

幻星赖志明和黎明星李俊与阿丞

docx image

一、数据血缘是什么

加工、流转

探查数据关系

二、数据血缘的组成

1、数据节点

实体承载数据功能业务

docx image

2、节点属性

当前节点的属性信息,例如表名,字段名,注释,说明等。

docx image

3、流转路径

docx image

数据流动方向、数据更新量级、数据更新频率

4、流转规则-属性

docx image

流转过程中发生的变化操作内容

三、我们为什么需要数据血缘

1、日益庞大的数据开发导致表间关系混乱,管理成本与使用成本激增

数据血缘产生最本质的需求。大数据开发作为数据汇集与数据服务提供方,庞大的数据与混乱的数据依赖导致管理成本与使用成本飙升。

docx image

2、数据价值评估,数据质量难以推进

表的优先级划分,计算资源的倾斜,表级数据质量监控,如何制定一个明确且科学的标准。

3、什么表该删,什么表不能删,下架无依据

业务库,数仓库,中间库,开发库,测试库等众多库表,是否存在数据冗余(一定存在)。以及存储资源如何释放?

4、动了一张表,错了一堆表

你改了一张表的字段,第二天醒来发现邮件里一堆任务异常告警。

5、ETL任务异常时的归因分析、影响分析、恢复

承接上个问题,如果存在任务异常或者ETL故障,我们如何定位异常原因,并且进行影响分析,以及下游受影响节点的快速恢复。

6、调度依赖混乱

数据依赖混乱必然会带来调度任务的依赖混乱,如何构建一个健壮的调度依赖。

7、数据安全审计难以开展

四、数据血缘可以做什么

1、流程定位,追踪溯源

docx image

通过可视化方式,将目标表的上下游依赖进行展示,一目了然。

2、确定影响范围

docx image

通过当前节点的下游节点数量以及类型可以确定其影响范围,可避免出现上游表的修改导致下游表的报错。

3、评估数据价值、推动数据质量

通过对所有表节点的下游节点进行汇总,排序,作为数据评估依据,可重点关注输出数量较多的数据节点,并添加数据质量监控。

4、提供数据下架依据

docx image

例如以下数据节点,无任何下游输出节点,且并无任何存档需求,则可以考虑将其下架删除。

5、归因分析,快速恢复

当某个任务出现问题时,通过查看血缘上游的节点,排查出造成问题的根因是什么。同时根据当前任务节点的下游节点进行任务的快速恢复。

6、梳理调度依赖

可以将血缘节点与调度节点绑定,通过血缘依赖进行ETL调度。

7、数据安全审计

数据本身具有权限与安全等级,下游数据的安全等级不应该低于上游的安全等级,否则会有权限泄露风险。

可以基于血缘,通过扫描高安全等级节点的下游,查看下游节点是否与上游节点权限保持一致,来排除权限泄露、数据泄露等安全合规风险。

五、数据血缘落地方案

目前业内常见的落地数据血缘系统以及应用,主要有以下三种方式:

1、采用开源系统:

Atlas、Metacat、Datahub等

docx image

采用开源系统最大的优点是投入成本较低,但是缺点主要包括

1、适配性较差,开源方案无法完全匹配公司现有痛点。

2、二开成本高,需要根据开源版本进行定制化开发。

2、厂商收费平台:

亿信华辰,网易数帆等华辰

docx image

此类数据平台中会内置数据血缘管理系统,功能较为全面,使用方便。但是同样也有以下缺点:

1、贵

ALL IN

3、自建

通过图数据库、后端、前端自建数据血缘管理系统,此方案开发投入较大,但是有以下优点

1、因地制宜,可根据核心痛点定制化开发元数据及数据血缘系统。

2、技术积累,对于开发人员来说,从0-1开发数据血缘系统,可以更深刻的理解数据业务。

3、平台解耦,独立于数据平台之外,数据血缘的开发不会对正常业务造成影响。

接下来我们讲讲如何自建数据血缘系统

六、如何构建数据血缘系统

1、明确需求,确定边界

在进行血缘系统构建之前,需要进行需求调研,明确血缘系统的主要功能,从而确定血缘系统的最细节点粒度,实体边界范围。

表级粒度血缘可以解决75%左右的痛点需求,

任务节点、库节点、表节点、字段节点、指标节点、报表节点、部门节点等

ROI(投入产出比)

2、构建元数据管理系统

目前市面上所有的血缘系统都需要依赖于元数据管理系统而存在。

元数据作为血缘的基础,一是用于构建节点间的关联关系,二是用于填充节点的属性,三是血缘系统的应用需要基于元数据才能发挥出最大的价值。所以构建血缘系统的前提一定是有一个较全面的元数据。

《元数据管理系统落地实施》

3、技术选型:图数据库

目前业内通常采用图数据库进行血缘关系的存储。

对于血缘关系这种层级较深,嵌套次数较多的应用场景,关系型数据库必须进行表连接的操作,表连接次数随着查询的深度增大而增多,会极大影响查询的响应速度。

而在图数据库中,应用程序不必使用外键约束实现表间的相互引用,而是利用关系作为连接跳板进行查询,在查询关系时性能极佳,而且利用图的方式来表达血缘关系更为直接。

下图为图数据库与关系型数据库在查询人脉时的逻辑对比:

docx image

4、血缘关系录入:自动解析and手动登记

自动解析:

SQL解析器

手动登记:

如果当前表无SQL抽取语句,数据来源为手动导入、代码写入、SparkRDD方式等无法通过自动化方式确定来源表的时候,我们需要对来源表进行手动登记,然后进行血缘关系的录入。

血缘关系录入需要基于图数据库进行,图数据库的建模、语句与关系型数据库截然不同,如有疑问可以加入社区交流群进行解答。

5、血缘可视化

血缘系统构建完成后,为了能够更好的体现血缘价值,量化产出,需要进行血缘可视化的开发,分为两步:

(1)链路-属性展示:

根据具体节点,通过点击操作,逐级展示血缘节点间的链路走向与涉及到的节点属性信息。

docx image

docx image

docx image

(2)节点操作:

基于可视化的血缘节点与当前节点附带的元数据属性,我们可以设想一些自动化操作例如:

节点调度:

属性修改:

还有更多可视化操作可以加入社区交流群进行讨论

6、血缘统计分析

数据血缘构建完成后,我们可以做一些统计分析的操作,从不同层面查看数据的分布与使用情况,从而支撑业务更好更快更清晰。

以我们团队举例,在工作过程中,我们需要以下血缘统计用于支撑数据业务,例如:

docx image

数据节点下游节点数量排序,用于评估数据价值及其影响范围

docx image

查询当前节点的所有上游节点,用于业务追踪溯源

docx image

数据节点输出报表信息详情统计,用于报表的上架与更新

docx image

查询孤岛节点,即无上下游节点的节点,用于数据删除的依据

7、血缘驱动业务开展

数据血缘构建完成,统计分析结果也有了,业务痛点也明确了,接下来我们即可利用数据血缘驱动业务更好更快开展。

我们团队目前落地的血缘相关业务有以下几点:

(1)影响范围告警:

将血缘关系与调度任务打通,监测当前血缘节点的调度任务,如果当前节点调度出现异常,则对当前节点的所有下游节点进行告警。

(2)异常原因探查:

还是将血缘关系与调度任务打通,监测当前血缘节点的调度任务,如果当前节点调度出现异常,则会给出当前节点的直接上游节点,用于探查异常原因。

(3)异常链路一键恢复:

基于上一应用,异常原因定位并且修复完成之后,可以通过血缘系统,一键恢复当前数据节点的所有下游节点调度任务,真正实现一键操作。

异常调度影响范围告警->异常原因探查->异常链路一键恢复

(4)支撑数据下架:

孤岛节点

(5)数据质量监控:

对当前血缘中所有节点输出的下有节点数量进行排序,可以精确的判断某张表的影响范围大小,从而可以根据此对高排序表进行数据质量的监控。

docx image

(6)数据标准化监控:

如果当前公司制定了基于库、表、字段的命名规范,我们可以通过探查血缘中的所有数据节点,并命名规范进行匹配,得到不符合规范的库、表、字段进行整改。

当然了,此业务仅基于元数据也可实现,放在此处属于博主强行升华了。

(7)数据安全审计:

团队基于用户职级、部门、操作行为等权重对目前的库表进行了数据权限等级划分,权限等级越高,当前表的安全级别越高。

团队基于血缘进行数据全链路的安全等级监测,如果发现下游节点安全等级低于上游节点,则会进行告警并提示整改。确保因为安全等级混乱导致数据泄露。

八、血缘系统评价标准

在推动数据血缘落地过程中,经常会有用户询问:血缘质量如何?覆盖场景是否全面?能否解决他们的痛点?做出来好用吗?

于是我也在思考,市面上血缘系统方案那么多,我们自建系统的核心优势在哪里,血缘系统的优劣从哪些层次进行评价,于是我们团队量化出了以下三个技术指标:

1、准确率

定义:

准确率是数据血缘中最核心的指标,例如影响范围告警,血缘的缺失有可能会造成重要任务没有被通知,造成线上事故。

我们在实践中通过两种途径,尽早发现有问题的血缘节点:

人工校验:

用户反馈:

2、覆盖率

定义:

血缘覆盖率是比较粗粒度的指标。作为准确率的补充,用户通过覆盖率可以知道当前已经支持的数据资产类型和任务类型,以及每种覆盖的范围。

在内部,我们定义覆盖率指标的目的有两个,一是我方比较关注的数据资产集合,二是寻找当前业务流程中尚未覆盖的数据资产集合,以便于后续血缘优化。

当血缘覆盖率低时,血缘系统的应用范围一定是不全面的,通过关注血缘覆盖率,我们可以知晓血缘的落地进度,推进数据血缘的有序落地。

3、时效性

定义:

对于一些用户场景来说,血缘的时效性并没有特别重要,属于加分项,但是有一些场景是强依赖。不同任务类型的时效性会有差异。

例如:故障影响范围告警以及恢复,是对血缘实时性要求很高的场景之一。如果血缘系统只能定时更新T-1的状态,可能会导致严重业务事故。

提升时效性的瓶颈,需要业务系统可以近实时的将任务相关的修改,以通知形式发送出来,并由血缘系统进行更新。

参考文献:

[1] 杨明皓:数据血缘的管控方法及应用场景

[2] Michael Adjei:什么是数据血缘?数据血缘的五大好处

[3] 李俊杰:2022 数据血缘基本指南

[4] 字节跳动:详解数据血缘的「整体设计」与「评价方案」

[5] twt社区:基于图数据库的元数据血缘关系分析技术研究与实践

© 版权声明
THE END
喜欢就支持一下吧
点赞10 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容